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Introduction 
Software systems have grown increasingly complex as modern life becomes more 

reliant on digital infrastructure. Today’s applications must support billions of users around the 
world, driving demand for scalable and flexible computing solutions. Companies like Amazon 
have responded by offering cloud platforms that provide on-demand infrastructure designed to 
meet these demands. 

Apache Kafka has emerged as a foundational technology for handling large volumes of 
real-time data. It enables organizations to move and process information quickly between 
systems, supporting critical functions from financial transactions to personalized 
recommendations. However, Warpstream reimagines this model for the cloud era. By rebuilding 
Kafka’s core functionality using cloud-native services, Warpstream offers a system that is more 
scalable and easier to manage while being more cost-effective. 

This paper explores whether these innovations are substantial enough to warrant patent 
protection. Using Warpstream as a case study, we will examine how U.S. patent law applies to 
modern, cloud-native software systems, particularly when they offer the same functionality as 
existing systems. 

 

Technical Description 

Event Streaming 
Imagine you are building a ridesharing app like Uber or Lyft. When a customer requests 

a ride, the system must calculate the optimal GPS route, find an available driver, determine a 
price the driver will accept, and handle payment transactions between the rider and the driver. 
Beyond these core tasks, the system also requires observability, real-time monitoring to ensure 
each service is functioning correctly, and analytics to derive business insights from accumulated 
data. 

A common strategy to allow apps like this to scale to millions of users is to split each 
major function into an independent service, called a microservice. Since microservices operate 
independently, explicit communication between them is necessary to complete a workflow. The 
diagram below illustrates a simplified version of the communication involved in handling a single 
trip request: 
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 In this system, when a rider initiates a trip request, the Rider App sends the request to 
the Trip Creating Service, which calculates details like the route and price. The Rider-Driver 
Matching Service then locates a compatible driver, and the Driver App prompts the driver to 
accept the trip. Once accepted, the system finalizes the trip booking, processes the driver’s 
payment, and updates both rider and driver interfaces. Meanwhile, observability services log 
actions in real-time to detect errors, and analytics systems export data for business insights. 
 In real-world systems, the communication complexity grows even further. Features such 
as dynamic pricing based on traffic, premium service options, and live driver tracking require 
even more microservices and inter-service communication, increasing the system’s complexity 
dramatically. 

This growing complexity leads to a broader architectural problem: connecting many 
different data sources and destination systems. A naive solution would be to build custom 
pipelines for every pair of systems. However, as the system scales, the number of required 
connections grows quadratically, leading to an O(N²) integration problem, as shown below: 
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Every time a new service is added, it must be connected to every existing service 

individually, quickly making the architecture difficult to maintain and highly fragile. Even small 
changes in one service’s data format or communication schema can ripple across the entire 
network and cause system-wide failures. This approach also introduces major performance 
bottlenecks, as actions may need to be broadcast separately to many different endpoints. 

A more scalable and reliable solution is to use an event streaming platform like Apache 
Kafka to centralize communication. In an event-driven architecture, data sources (producers) 
and data consumers interact indirectly through Kafka. Producers send events to Kafka when 
something happens, and Kafka forwards those events to the relevant consumers. This 
architecture reduces the system's complexity from O(N²) connections to O(N) standardized 
integrations, improving scalability, fault tolerance, and maintainability: 

 
By introducing an intermediary platform like Kafka, new services only need to integrate 

once to the centralized event platform, rather than with every other service individually. This shift 
from direct pipelines to event streaming represents a fundamental architectural improvement for 
modern systems. 
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Apache Kafka 
 Now that we understand the need for event streaming platforms, we can dive into what 
Apache Kafka is and how it works. Apache Kafka is a popular open-source event streaming 
platform originally developed by LinkedIn in 2010. Today, it is used by over 80% of the Fortune 
1001 to move and process large volumes of real-time data efficiently. 

Kafka operates on the concepts of producers and consumers. Producers create events, 
while consumers retrieve and process them. Between these two roles sits the Kafka cluster, 
made up of brokers: servers responsible for receiving, storing, and forwarding messages. To 
coordinate and manage the brokers, Kafka typically relies on a system like Apache Zookeeper, 
which ensures consistency and resilience even if individual brokers fail. The basic architecture 
is illustrated below: 

 
 Kafka scales horizontally by adding more brokers to the system. However, this approach 
introduces challenges. In order to prevent data loss during node failures, Kafka requires 
redundancy through data replication. The traditional formula dictates that to tolerate n broker 
failures, at least 2n + 1 replicas are needed. This redundancy, along with the need for close 
monitoring of node health and rebalancing workloads when brokers are added or fail makes 
running Kafka operationally intensive. Many organizations must dedicate specialized engineers 
solely to manage Kafka clusters. While Kafka has proven robust and reliable, this burden has 
opened opportunities for rethinking its architecture using newer technologies. 
 

Object Storage 
 One technological advance that addresses some of Kafka’s challenges is the rise of 
cloud-based object storage. Services like Amazon S3 (Simple Storage Service) offer a highly 
durable, low-cost method for storing large volumes of digital data as binary blobs, accompanied 
by optional metadata in a simple key-value format. 

1 https://kafka.apache.org/powered-by 
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Unlike traditional databases, object storage systems are optimized for storing and 
retrieving entire files rather than performing fine-grained updates or fast indexed queries. They 
offer three primary operations: PUT(key, object, metadata) to store data, GET(key) to retrieve 
data, and LIST() to view stored keys. The simplicity of the interface provides scalability and 
parallelism, with services like Amazon S3 offering durability guarantees of 99.999999999% and 
availability of 99.99%2. 

However, this simplicity comes at a cost. Object storage has higher latency than 
traditional databases3 and struggles with workloads requiring frequent small updates4. 
Additionally, it lacks features like indexing or complex query languages. Despite these 
limitations, with appropriate techniques such as batching multiple small reads and writes into 
larger operations, many systems can still leverage object storage effectively for cost savings 
and scalability. 

The relationship between object storage and traditional databases is illustrated below: 
 

 
 
At the unstructured end is object storage, optimized for flexibility and scalability but with 

limited querying capabilities. Moving toward the structured end, document databases like 
MongoDB and relational databases like PostgreSQL offer increasingly sophisticated query 
models at the cost of more rigid data models and higher storage costs. 

Warpstream 
Warpstream is a Kafka-compatible event streaming platform built specifically for the 

cloud era, leveraging object storage as its core storage layer rather than traditional broker 
servers. Released in 2023 and acquired by Confluent just 13 months later for $220 million5, 
Warpstream claims to deliver similar functionality to Kafka while being 5–10 times cheaper and 
significantly easier to scale. 
 The fundamental difference between Kafka and Warpstream lies in architecture. While 
Kafka brokers are responsible for both transmitting and storing event data, Warpstream 

5 https://pitchbook.com/profiles/company/534965-14  
4 Appends were recently added to S3 with some limitations 
3 S3 Express is a new AWS offering that allows faster latency with tradeoffs 
2 https://docs.aws.amazon.com/AmazonS3/latest/userguide/DataDurability.html  
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separates these concerns. Event data is stored directly in customer-owned cloud object storage, 
while lightweight, stateless compute agents handle the ingestion and delivery of events. These 
agents do not maintain persistent local state, allowing storage and compute resources to be 
scaled independently and flexibly. 

Additionally, Warpstream separates data from metadata. Event data, potentially 
containing sensitive information, is stored in the customer’s object store. Metadata, which tracks 
offsets, consumer positions, and other pieces of data used for handling data transmission are 
managed separately through Warpstream's own cloud service. This separation not only 
improves system design but also simplifies regulatory compliance for customers, especially for 
data privacy standards like HIPAA. Warpstream’s architecture is depicted below: 

 

  
By offloading storage to cloud infrastructure and simplifying compute through stateless 

agents, Warpstream significantly reduces operational complexity compared to Kafka. Storage 
expansion requires only purchasing more cloud storage, while compute scaling involves 
deploying new agents. This architectural shift illustrates how cloud-native design principles can 
lead to more efficient, scalable, and cost-effective event streaming systems. 

Legal Analysis 
Now that we understand Warpstream’s architecture and underlying technology, we can 

assess whether it would be eligible for patent protection under U.S. patent law. To qualify, an 
invention must meet several requirements: it must fall within patentable subject matter and not 
be an abstract idea (§101), it must be novel and not disclosed in prior art (§102), it must be 
non-obvious to a person having ordinary skill in the art (§103), and it must be adequately 
described in the filed claims (§112). 

7 



Patent Claim 
Since no official patent has been issued for Warpstream, this analysis uses a 

hypothetical claim shown below. We will assume that these claims pass (§112) for this analysis. 
 
A distributed event streaming system comprising: 

- An interface compatible with Apache Kafka for producing and consuming event 
data 

- An object storage system used as the primary storage for all event data, 
optionally owned by the customer 

- A metadata service, operated by the system provider, that manages the 
coordination and tracking of event data streams 

- Stateless compute agents that handle data ingestion and delivery without using 
local disk storage, relying entirely on the object storage and metadata service. 

 

Patentable Subject Matter (§101) 
 For a software product to be under patentable subject matter, it must pass the 
Alice/Mayo Framework established in Alice Corp. v. CLS Bank (2014). This framework consists 
of two steps: 
 

1. Is the Claim Directed to an Abstract Idea? 
 

2. Does the Claim Include an Inventive Concept? 
 

Mayo Step 1 
 
 One argument in favor of Warpstream satisfying Step 1 is that it addresses a concrete 
technical problem, scaling Kafka-like systems in a simpler and more cost-effective way through 
a specific system architecture. This approach is supported by DDR Holdings v. Hotels.com 
(2014), where a system that solved a business-technical problem in a non-conventional manner 
was found patent-eligible. Similarly, Warpstream restructures event streaming by eliminating 
traditional broker architecture and relying on cloud-native infrastructure to achieve cost and 
scalability advantages. 
 However, there is also a strong counterargument that Warpstream simply applies known 
cloud infrastructure techniques to an existing system without fundamentally changing the 
underlying concept of event streaming. Under Parker v. Flook (1978), simply implementing an 
abstract idea in a new technological environment is not enough. If Warpstream's improvements 
are viewed as straightforward adaptations of conventional cloud tools, a court could 
characterize the system as merely an abstract idea constrained to a particular technological 
field. 
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Mayo Step 2 
Under Step 2, the inquiry is whether Warpstream’s architecture includes an inventive 

concept that transforms it into patentable subject matter. Supporters would argue that the 
combination of stateless compute agents, customer-controlled object storage, and a separate 
metadata service reflects a technical improvement over prior event streaming systems, much 
like the database architecture improvements found patentable in Enfish v. Microsoft (2016).  
 Opponents could argue that Warpstream’s changes, while practically useful, merely 
represent conventional modernization of known components. Mayo v. Prometheus (2012) 
reinforces that using known techniques to make existing processes cheaper or more efficient 
does not necessarily constitute an inventive concept. By analogy, replacing a traditional motor 
with a more efficient one in an existing ceiling fan design would not, by itself, make the fan 
patentable. 
 

Ruling 
 
 Overall, Warpstream’s technology likely qualifies as patentable subject matter under 
§101. Its architecture addresses a specific technical problem, improving the scalability and cost 
structure of event streaming systems, through a concrete combination of stateless agents, 
separated metadata services, and customer-controlled object storage. These features, when 
properly claimed, would distinguish Warpstream from simply abstracting an existing idea. 
 However, the strength of Warpstream’s patent eligibility depends on how narrowly the 
claims are drafted. A claim closely tied to the particular technical implementation, emphasizing 
the specific separation of storage and compute, the stateless nature of agents, and the role of 
metadata coordination, would likely survive §101 scrutiny. In contrast, a claim that broadly 
attempts to cover any cloud-native adaptation of an event streaming system risks being 
invalidated as merely applying conventional technology to a known concept. 
 The line for patentable subject matter, therefore, falls between protecting Warpstream’s 
particular technical solution and trying to monopolize the general idea of cloud-optimized event 
streaming. While the design outlined in the example patent used for this analysis is specific 
enough, making it more abstract (such as by replacing object storage with “any cloud storage”) 
would make it fail §101. 

Novelty (§102) 
 For Warpstream to be eligible for a patent, it must be novel under §102. This means the 
claimed invention must not be disclosed in any single prior art reference. To assess this, we 
evaluate several existing technologies to determine whether they anticipate Warpstream’s 
design. 
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Kafka Tiered Storage6 
 Kafka Tiered Storage is a relatively recent feature introduced to help Kafka scale by 
splitting data into two tiers: hot data and cold data. Hot data, which is frequently accessed, 
remains stored on traditional Kafka brokers. Cold data, which is less frequently needed, can be 
offloaded to external object storage systems to reduce costs, at the price of increased query 
latency. 
 The overlap with Warpstream lies in the use of object storage for cost savings. However, 
unlike Kafka Tiered Storage, Warpstream offloads all event data to object storage, eliminating 
the need for brokers to store hot data. Additionally, Warpstream introduces additional 
engineering optimizations to minimize the latency impact of accessing object storage. 
Therefore, although Kafka Tiered Storage shares some conceptual similarities, it does not 
anticipate Warpstream's full system architecture. 

Apache Pulsar7 
 Apache Pulsar is another event streaming platform that can emulate the Apache Kafka 
interface. Pulsar splits Kafka’s monolithic broker cluster into two specialized clusters: one for 
stateless communication with producers and consumers, and one for persistent storage, 
coordinated by Apache Zookeeper. 
 Like Warpstream, Pulsar separates compute and storage. However, Pulsar’s storage 
cluster consists of traditional servers rather than cloud-based object storage. Moreover, Pulsar 
does not separate data from metadata in the way Warpstream does, Warpstream allows 
customers to retain full control over their raw event data, while the system provider manages 
metadata separately. These architectural differences make Warpstream distinct from Pulsar in 
both design and function. 

Redpanda8 
 Redpanda is a Kafka-compatible event streaming platform designed for higher 
performance and lower latency. It achieves these improvements primarily through 
reimplementing Kafka’s architecture in C++, using high-performance techniques like advanced 
caching, zero-copy IO, and performance-oriented tiered storage (as covered by Patent 
117433339). 
 Although Redpanda and Warpstream both aim to improve upon Kafka, their approaches 
diverge significantly. Redpanda prioritizes speed and performance enhancements within a 
broker-centric architecture, while Warpstream focuses on simplifying the architecture by 
removing broker persistence entirely and relying on cloud object storage for all data durability. 
While both systems aim to reduce costs and complexity, Warpstream’s architectural philosophy 
sacrifices some speed for ease of scaling and lower operational overhead, fundamentally 
different engineering tradeoffs from Redpanda’s optimization strategy. 

9 https://patents.google.com/patent/US11743333B2/en?oq=11743333  
8 https://www.redpanda.com/  
7 https://pulsar.apache.org/  
6 https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage  
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Patent 20110196848 A110 
 Patent Publication 20110196848 A1 discusses strategies for separating data from 
metadata within distributed systems. This reference shows that the general concept of 
decoupling metadata from raw data was already known in the field. However, while the idea of a 
data-metadata split existed, Warpstream’s specific implementation, using customer-owned 
object storage for data and a centralized cloud metadata service for coordination, offers 
architectural and operational differences. Therefore, although this prior patent narrows 
Warpstream’s ability to claim novelty solely on the idea of separating data and metadata, 
Warpstream’s full system remains distinct. 

Ruling 
 Overall, while individual elements of Warpstream’s design, such as object storage use, 
compute-storage separation, Kafka compatibility, and data-metadata separation, are present in 
prior technologies, no single prior art reference discloses the full combination of these elements 
as employed by Warpstream. Additionally, Warpstream’s architecture results in different 
performance characteristics, scalability advantages, and operational efficiencies compared to 
any of the cited prior art. Therefore, Warpstream’s system as a whole appears to satisfy the 
novelty requirement under §102. 

Non-Obviousness (§103) 
 For Warpstream to be patentable, it must meet the non-obviousness requirement of 35 
U.S.C. §103. Specifically, the invention must not have been an obvious variation of existing 
technology to a person having ordinary skill in the art ("PHOSITA") at the time of invention. The 
Supreme Court in Graham v. John Deere (1966), established the controlling framework for this 
analysis, which examines four key factors: 
 

1. The scope and content of the prior art, 
 

2. The differences between the prior art and the claims, 
 

3. The level of ordinary skill in the pertinent art, and 
 

4. Secondary considerations such as commercial success, long-felt but unsolved needs, 
and the failure of others. 

 
Each of these factors must be weighed to determine whether Warpstream's architecture 

represents a non-obvious invention or merely an aggregation of known concepts yielding 
predictable results. The argument for Warpstream being non-obvious rests primarily on the 
technical barriers present at the time of its development. Object storage systems, such as 
Amazon S3 or Google Cloud Storage, historically exhibited high latency and were not 

10 https://patents.google.com/patent/US20110196848A1/en  
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considered suitable for event streaming as they typically demand low-latency, high-throughput 
access patterns. Designing a scalable, performant event streaming platform on such storage 
systems would have required significant innovation and technical skill. Additionally, 
Warpstream’s architecture required advanced engineering skills to effectively mask the latency 
penalties inherent in object storage, while still providing an interface compatible with Kafka 
clients. This level of technical sophistication could support a finding of non-obviousness, as it 
suggests that the solution was not readily apparent to those skilled in the field. 

However, the argument for obviousness is strongly informed by the Supreme Court's 
reasoning in KSR International Co. v. Teleflex (2007). In KSR, the Court emphasized that when 
a combination of familiar elements according to known methods yields no more than predictable 
results, the combination is likely unpatentable. Warpstream’s architecture of combining tiered 
storage concepts from Kafka, the separation of compute and storage from Apache Pulsar, 
cloud-optimized Kafka interfaces seen in Redpanda, and metadata separation techniques 
outlined in existing patents appears to follow this pattern. As explained in MPEP §2141 and 
§2143, an invention is considered obvious if a PHOSITA would have had a reason to combine 
prior art teachings with an expectation of success. 

The scope and content of the prior art reveal that each of Warpstream’s components 
was individually known. Kafka’s Tiered Storage introduced the use of object storage for cold 
event data to reduce costs. Apache Pulsar demonstrated the value of separating the compute 
and storage layers to improve scalability and maintainability. Redpanda illustrated that 
Kafka-compatible systems could be re-architected for optimized performance and cost 
efficiencies. Separating data from metadata was also a known strategy in the art, as reflected in 
Patent Publication 20110196848 A1. Thus, the individual ideas behind Warpstream were not 
novel on their own and would have been accessible to a PHOSITA familiar with distributed 
system architecture. 

The differences between Warpstream and the prior art primarily involve extent, not 
uniqueness. Warpstream extends the tiered storage model by moving all event data, not just 
cold data, to object storage. It furthers the separation of compute and storage by eliminating any 
persistent broker storage nodes entirely. While these changes required careful engineering, they 
would arguably have been logical, incremental steps for a skilled artisan seeking to optimize 
costs and scalability using cloud-native technologies. 

The level of ordinary skill in the art at the relevant time was high. A PHOSITA would 
possess experience with distributed systems, event streaming platforms, cloud infrastructure, 
and data storage technologies. Given the growing trend toward cloud-first architectures and the 
documented use of object storage for cost savings in other areas, a PHOSITA could have 
reasonably envisioned an event streaming system that pushed further into cloud-native object 
storage, even if some latency compromises were involved. 

Secondary considerations also fail to overcome the presumption of obviousness. 
Although Warpstream may have achieved commercial success, that success must be causally 
linked to the technical merits of the invention rather than market timing or cost leadership alone. 
Additionally, there was no demonstrable long-felt but unmet need that Warpstream uniquely 
solved; systems like Pulsar and Kafka’s tiered storage were already evolving toward similar 
goals. There is also no evidence of widespread failure by others to integrate object storage into 
event streaming systems in a meaningful way. 
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Overall, although Warpstream’s design reflects careful engineering and a clear 
understanding of distributed systems, it represents a combination of known elements yielding 
predictable results. Under the standards articulated in Graham and KSR, Warpstream’s 
architecture would likely be deemed obvious to a PHOSITA and therefore unpatentable under 
§103. 
 

Conclusion 
This paper analyzed the patentability of Warpstream, a cloud-native event streaming 

system that reimagines Apache Kafka by separating storage and compute through the use of 
object storage and stateless agents. Under U.S. patent law, Warpstream likely qualifies as 
patentable subject matter under §101 and meets the novelty requirement of §102. However, it 
would likely fail the non-obviousness test under §103 because its design largely combines 
known elements in a way that would have been predictable to a person having ordinary skill in 
the art. While Warpstream’s architecture delivers real technical and operational advantages, it is 
best understood as a skillful application of existing concepts rather than a fundamentally 
inventive breakthrough. As a result, obtaining broad patent protection on the overall system 
would be difficult, although the business and engineering innovations remain highly valuable. 

Future Work 
Looking ahead, Warpstream should adopt a focused intellectual property strategy that 

acknowledges both the opportunities and the limitations presented by its legal position. 
First, Warpstream should protect its implementation primarily as a trade secret. Since 

Warpstream is closed-source, maintaining confidentiality over internal designs, performance 
optimizations, and system orchestration is critical. However, trade secrets come with the risk 
that competitors could independently discover similar techniques, and enforcement can be 
difficult if misappropriation is not clear or provable. Therefore, Warpstream must invest in access 
controls, NDAs, and other internal policies to minimize any risk of leakage or unintentional 
disclosure. 

Second, Warpstream should consider limited use of copyright protection, but with 
caution. While copyright can protect the source code and technical documentation, 
Warpstream’s close compatibility with Apache Kafka raises the question of whether it could be 
viewed as a "derivative work." If so, this could complicate or weaken Warpstream’s ability to 
enforce its copyrights, especially given the open-source licensing terms of Kafka. Before 
pursuing copyright registration aggressively, Warpstream should conduct a careful legal review 
to evaluate whether its implementation is sufficiently original to avoid being classified as 
derivative. 

Finally, while broad system patents are unlikely to be successful, Warpstream should still 
explore filing narrowly tailored patents covering specific technical innovations, such as latency 
optimization methods for object storage or novel metadata handling techniques. Even if 
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individual components are incremental, well-drafted patents could strengthen Warpstream’s 
negotiating position and provide limited but meaningful IP protection. 

By relying primarily on strong trade secret protections, selectively pursuing narrowly 
scoped patents, and carefully assessing the viability of copyright claims, Warpstream can 
effectively use the U.S. legal system to protect its intellectual property. 

Open Questions 
An important unresolved issue is whether a system that takes an existing open-source 

project and redesigns it to be "cloud-native" should be eligible for patent protection. On one 
hand, a cloud-native redesign often involves significant engineering effort and can result in 
meaningful technical improvements, such as better scalability, lower costs, and easier 
management. On the other hand, if the core functionality remains the same and the innovation 
lies only in adapting to modern infrastructure, granting a patent might risk protecting what is 
ultimately a routine modernization. Under U.S. patent law, particularly following KSR v. Teleflex, 
applying known techniques to existing systems is often viewed as obvious unless the adaptation 
solves a previously unaddressed technical challenge in a non-trivial way. Therefore, to support 
patentability, a cloud-native redesign would likely need to incorporate additional new 
innovations, such as new storage strategies, coordination methods, security models, or other 
fundamental improvements to system behavior, beyond simply moving to the cloud. 

Another open question concerns the extent to which a software product’s interface can 
be protected by patents. This is particularly important for Warpstream’s compatibility with 
Apache Kafka. Generally, software interfaces, such as APIs or wire protocols, can sometimes 
be patented if they present a novel, non-obvious technical solution rather than simply a 
functional necessity. The situation is similar to the legal questions raised in Apple v. Samsung, 
where Samsung was found to have infringed Apple’s design and utility patents, including 
aspects of the iPhone’s interface and overall look and feel. Although functionality and 
appearance are different areas of protection, the case showed that copying distinctive, 
protectable features, even if not copying internal workings, can be actionable. If Kafka’s protocol 
had been patented, Warpstream’s use of a compatible interface could have exposed it to 
potential liability, much like Samsung was liable for mimicking Apple’s design language. 
Whether Warpstream infringes would depend on whether Kafka’s patents, if they existed, 
claimed not just the internal operation but the external communication protocols that 
Warpstream reuses. 

This comparison underscores a larger challenge: as software systems become 
increasingly reliant on standards set by open source projects, to what extent is it ethical for 
third-party companies to iterate on these projects to make and/or sell a patented successor 
without rewarding the original creators? 
 
 

14 


	The Patentability of Event Streaming Systems 
	 
	Introduction 
	Technical Description 
	Event Streaming 
	Apache Kafka 
	Object Storage 
	Warpstream 

	Legal Analysis 
	Patent Claim 
	Patentable Subject Matter (§101) 
	Mayo Step 1 
	Mayo Step 2 
	Ruling 

	Novelty (§102) 
	Kafka Tiered Storage6 
	Apache Pulsar7 
	Redpanda8 
	Patent 20110196848 A110 
	Ruling 

	Non-Obviousness (§103) 

	Conclusion 
	Future Work 
	Open Questions 


